

The Atomic Statistical Hypothesis: Light as a Continuous Wave with Material-Dependent Quantization

David Barbeau
Independent Researcher
`david@bigbadaboom.ca`
`@stoic_david on X`

July 10, 2025

Abstract

The Atomic Statistical Hypothesis (ASH) proposes that light propagates as a continuous electromagnetic wave, with quantization observed in phenomena like the photoelectric effect arising from material-dependent energy absorption rather than intrinsic light quanta (photons). Energy not absorbed in discrete quanta, dictated by material properties such as the work function, is released as heat or longer-wavelength radiation (e.g., infrared). This model eliminates the need for wave-particle duality and resolves inconsistencies in quantum mechanics (QM), including the geometric implausibility of photons, photovoltaic efficiency loss, blackbody radiation anomalies, and quantum entanglement's non-locality. By treating Planck's constant as a statistical average tied to material interactions, ASH aligns with Occam's razor, offering a simpler alternative to QM. We propose an experiment comparing sodium and cesium in the photoelectric effect near sodium's threshold frequency to test material-dependent quantization, predicting cesium will produce more photocurrent/voltage and sodium more residual heat/infrared. If confirmed, this could redefine light-matter interactions and eliminate philosophical issues in QM.

1 Introduction

Quantum mechanics (QM) revolutionized physics with the photon model, describing light as discrete energy packets ($E = h\nu$) to explain phenomena like the photoelectric effect and blackbody radiation. However, the wave-particle duality of light—where photons act as localized particles yet spread over a spherical wavefront—introduces geometric and philosophical challenges, including quantum entanglement's “spooky action at a distance.” Classical wave theories fail to account for quantization, leading to issues like the ultraviolet catastrophe.

The Atomic Statistical Hypothesis (ASH) posits that light is a continuous electromagnetic wave, with quantization arising from the discrete energy levels of material detectors (e.g., work functions or bandgaps). Residual energy not absorbed in these quanta is

released as heat or low-frequency radiation (e.g., infrared). ASH leverages the known material dependence of thresholds (e.g., different work functions for sodium and cesium) to challenge the photon model, potentially resolving QM's inconsistencies while adhering to Occam's razor. This paper outlines the theoretical framework, problems addressed, and a proposed experiment to test material-dependent quantization.

2 Theoretical Framework

ASH is grounded in the following principles:

- **Light as a Continuous Wave:** Light propagates as a classical electromagnetic wave with electric field $E(t) = E_0 \cos(2\pi\nu t)$, intensity $I \propto E_0^2$, and energy flux $S = \epsilon_0 c E_0^2 / 2$. It spreads spherically from a point source ($I \propto 1/r^2$), consistent with Maxwell's equations and experiments like the double-slit interference [1].
- **Material-Dependent Quantization:** Energy is absorbed in discrete quanta determined by the material's electronic structure (e.g., work function ϕ in metals or bandgap E_g in semiconductors). For example, in the photoelectric effect, electrons are ejected only if $h\nu \geq \phi$, mimicking photon-like behavior ($K = h\nu - \phi$).
- **Residual Energy:** Energy not absorbed in quanta is re-emitted as low-frequency radiation (e.g., infrared, $h\nu' \ll h\nu$) or converted to heat (phonons), ensuring energy conservation:

$$E_{\text{incident}} = E_{\text{absorbed}} + E_{\text{residual}}$$

- **Statistical Planck's Constant:** The constant $h \approx 6.626 \times 10^{-34} \text{ J}\cdot\text{s}$ is a statistical average from interactions between the continuous wave and material energy levels. Different materials may yield varying effective h_{eff} .
- **Material Thresholds:** Different materials have distinct thresholds (e.g., sodium: $\phi_A \approx 2.3 \text{ eV}$; cesium: $\phi_B \approx 2.1 \text{ eV}$), leading to variations in absorbed quanta and residual energy.

This framework eliminates photons, wave-particle duality, and non-locality, offering a simpler, classical-like model.

3 Problems Addressed by the Hypothesis

ASH resolves several inconsistencies in QM and classical physics, providing a more intuitive explanation for key phenomena.

3.1 Geometric Implausibility of Photons

Problem: Photons are localized particles ($E = h\nu$) traveling in straight lines, yet their energy spreads over a spherical surface ($I \propto 1/r^2$). This geometric paradox is philosophically unappealing.

Solution: ASH treats light as a continuous wave, spreading spherically. Detectors sample energy locally based on material properties, resolving the paradox without duality.

3.2 Photoelectric Effect

Problem: Classical waves predict electron ejection at any frequency with high intensity, contradicting the threshold ($\nu \geq \nu_0$). QM's photon model ($K = h\nu - \phi$) introduces duality [2].

Solution: Material energy levels impose the threshold, absorbing energy in quanta. Residual energy as heat/infrared explains the threshold and instantaneous response without photons.

3.3 Photovoltaic Efficiency Loss

Problem: PV cells lose efficiency when heated due to bandgap reduction and recombination, explained in QM via photons but tied to material properties.

Solution: Heating disrupts energy absorption, increasing residual energy as heat/infrared, reducing electrical output, aligning with material dependence.

3.4 Blackbody Radiation

Problem: Classical physics predicts the ultraviolet catastrophe. QM's quantized photons fix this but add complexity [3].

Solution: A continuous wave's energy, sampled by material detectors, could mimic the Planck distribution ($u(\nu, T) = \frac{8\pi h\nu^3}{c^3} \frac{1}{e^{h\nu/kT} - 1}$), with residual energy as heat avoiding the catastrophe (requires derivation).

3.5 Quantum Entanglement

Problem: QM claims measuring one entangled particle instantly affects its distant partner, implying non-locality ("spooky action at a distance"). This cannot be directly tested due to the single-measurement limit, where each particle is measured only once. Statistical violations of Bell inequalities rely on aggregated data, not individual causation, making them vulnerable to misinterpretation—a kind of "Wizard of Oz" illusion where the appearance of non-locality masks local processes [4].

Solution: ASH proposes that entangled outcomes are pre-set at emission, not influenced during measurement. Quantum-like behavior arises from local interactions between continuous electromagnetic waves and material-specific detection thresholds (e.g., work functions or bandgaps). Binary detection outcomes (e.g., +1/-1 for polarization) emerge from how detectors sample the wave's energy distribution, determined by material properties at the point of emission. For example, in a Bell test with entangled photon pairs, correlations reflect the wave's pre-set properties (e.g., polarization or phase) sampled differently by detectors with distinct thresholds. This offers a fully local, testable explanation, eliminating non-locality and quantum "magic" without requiring entangled states.

4 Proposed Experiment

To test ASH, we propose a photoelectric effect experiment comparing materials with different work functions, expecting variations in quantization and residual energy.

4.1 Experimental Setup

- **Materials:**

- Sodium: $\phi_A \approx 2.3 \text{ eV}$, $\nu_{0A} \approx 5.55 \times 10^{14} \text{ Hz}$ (540 nm).
- Cesium: $\phi_B \approx 2.1 \text{ eV}$, $\nu_{0B} \approx 5.07 \times 10^{14} \text{ Hz}$ (590 nm).

- **Light Source:** Monochromatic laser at $\nu \approx 5.55 \times 10^{14} \text{ Hz}$, near sodium's threshold, above cesium's. Intensity $1\text{--}10 \text{ nW/cm}^2$ for measurable photocurrent.

- **Apparatus:**

- Vacuum tubes with sodium/cesium cathodes to minimize contamination.
- Picoammeter for photocurrent (electron ejections).
- Potentiometer for stopping voltage (V_s , where $K = eV_s$).
- Microbolometer or infrared spectrometer (700–2500 nm) for residual heat/infrared.

- **Procedure:**

1. Calibrate detectors for equal sensitivity.
2. Illuminate both materials simultaneously.
3. Measure photocurrent, V_s , and heat/infrared for 10–20 trials.
4. Vary intensity ($1\text{--}5 \text{ nW/cm}^2$) to test scaling.

4.2 Predictions

- **QM Prediction:** Sodium: $K_A \approx 0$, $V_{sA} \approx 0$, minimal photocurrent. Cesium: $K_B \approx 0.2 \text{ eV}$, $V_{sB} \approx 0.2 \text{ V}$, higher photocurrent. One electron per photon ($E = h\nu \approx 2.3 \text{ eV}$), universal h .
- **ASH Prediction:** Cesium produces higher photocurrent (e.g., multiple “photons” at smaller quanta, $\sim 1.15 \text{ eV}$) and/or anomalous V_s . Sodium releases more heat/infrared. h_{eff} may vary by material.

4.3 Success Criteria

If cesium shows higher photocurrent (e.g., 2x electrons per energy unit) or anomalous voltage, and sodium more heat/infrared, ASH is supported, suggesting material-dependent quantization and a statistical h .

5 Discussion

ASH leverages the known material dependence of thresholds (e.g., $\phi_A \neq \phi_B$) to challenge QM's photon model, offering a simpler framework per Occam's razor. It resolves:

- **Geometric Issues:** Continuous waves spread spherically, avoiding photon paradoxes.

- **Material Phenomena:** PV efficiency loss and laser emission are explained as wave interactions with material energy levels.
- **Entanglement:** Correlations are local, pre-set at emission, eliminating non-locality.
- **Philosophical Clarity:** ASH avoids duality, wavefunction collapse, and non-locality.

Challenges:

- QM's universal h and single-photon experiments are robust. ASH must replicate these.
- Measuring residual heat/infrared is difficult due to low energies.
- Bell violations require modeling to explain correlations without photons.

Historical Oversight: Material-dependent thresholds are established, yet their link to detector-driven quantization is untested, likely due to QM's empirical success.

Implications: If confirmed, ASH could redefine light-matter interactions, eliminate photons, and resolve QM's philosophical issues, impacting applications like PV cells and quantum cryptography.

6 Conclusion

ASH proposes that light is a continuous wave, with quantization arising from material-dependent absorption and residual energy as heat/infrared. It resolves QM's inconsistencies, including entanglement's non-locality, and aligns with Occam's razor. The proposed sodium/cesium experiment tests material-dependent quantization, potentially revolutionizing physics if successful.

Future Work: Conduct the experiment, model absorption/heat mathematically, and test ASH in entanglement experiments to challenge non-locality.

References

- [1] Young, T. (1801). On the theory of light and colours. *Philosophical Transactions of the Royal Society of London*, 92, 12–48.
- [2] Einstein, A. (1905). On a heuristic point of view concerning the production and transformation of light. *Annalen der Physik*, 17(6), 132–148.
- [3] Planck, M. (1900). On the law of distribution of energy in the normal spectrum. *Annalen der Physik*, 4(3), 553–563.
- [4] Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox. *Physics*, 1(3), 195–200.