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ABSTRACT Key predictions of the Hubble law are incon-
sistent with direct observations on equitable complete samples
of extragalactic sources in the optical, infrared, and x-ray wave
bands-e.g., the predicted dispersion in apparent magnitude is
persistently greatly in excess of its observed value, precluding
an explanation via hypothetical perturbations or irregularities.
In contrast, the predictions of the Lundmark (homogeneous
quadratic) law are consistent with the observations. The Lund-
mark law moreover predicts the deviations between Hubble law
predictions and observation with statistical consistency, while
the Hubble law provides no explanation for the close fit of the
Lundmark law. The flux-redshift law F X (1 + z)/z appears
consistent with observations on equitable complete samples in
the entire observed redshift range, when due account is taken
of flux limits by an optimal statistical method. Under the
theoretical assumption that space is a fixed sphere, as in the
Einstein universe, this law implies the redshift-distance rela-
tion z = tan2(r/2R), where R is the radius of the spherical
space. This relation coincides with the prediction of chrono-
metric cosmology, which estimates R as 160 ± 40 Mpc (1 parsec
= 3.09 x 1016 m) from the proper motion to redshift relation
of superluminal sources. Tangential aspects, including statis-
tical methodology, fundamental physical theory, bright cluster
galaxy samples, and proposed luminosity evolution, are briefly
considered.

The good news is that there is a simple redshift relation that
appears consistent with observations in complete objectively
defined samples in the infrared and x-ray wave bands as well
as the optical. The bad news is that it doesn't at all resemble
the Hubble law, which appears simply irreconcilable with
these observations.
These facts come out in a systematic audit of redshift

observations and theory, of the sort that every putative
scientific theory should have periodically, as emphasized in
the National Academy of Sciences booklet "Science and
Creationism" (1). Outside of logic and mathematics, our
basis for separating fact from fancy has to be probability,
whose elementary laws are beyond dispute. A theory whose
predictions are improbably deviant from direct observation is
scientifically incorrect, while one whose predictions agree
with direct observation within apparent statistical fluctua-
tions is scientifically tenable and may be correct, although
never in an ultimate sense. A "theory" that escapes devia-
tions from direct observation by not making predictions just
isn't a scientific theory, or in Pauli's terms, "isn't even good
enough to be wrong."
Thus the burden of our audit has to be the objective,

reproducible, maximally accurate determination of probabil-
ity levels for the deviations of theoretical prediction from
observation, in documented fair samples. Of course, the
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quintessential problem of observational astronomy, the in-
herent cutoffon flux, produces a kind of inherent bias, so that
"fair" here doesn't mean that the sources are from the same
population at all redshifts but that the criterion for inclusion
in the sample is an objective and theory-independent one.

In this era of full disclosure, I would be remiss not to
mention that I am the proposer ofa non-Doppler theory ofthe
redshift, called chronometric cosmology (CC), that predicts
a different redshift-distance relation from those ofFriedman-
Lemaitre cosmology (FLC). This may affect our visceral
responses, but we have absolutely no interest in being
purveyors of an ultimately false theory of the nature of the
redshift, to speak also for my principal collaborator, Jeffrey
Nicoll, as well as a number of younger colleagues. We have
gone to considerable lengths to devise and implement pro-
cedures that are ofmaximal statistical efficiency and physical
conservatism; to document these procedures so that our
results are fully reproducible from the observations in the
designated sample; to base our analyses on well-documented
and thoroughly studied flux-limited samples (in whose ob-
servation we had no hand, and which are used exactly as
published, without any type of model-dependent correction);
and to stick to the same basic procedure in all the analyses,
in all redshift ranges and for all types of sources, to facilitate
fair comparisons.
For conservatism on the physical side, we make no as-

sumptions regarding the spatial distribution of the sources.
These are uncertain, often questioned, and unnecessary for
the estimation of the luminosity function (LF), when nor-
malized to a total of unity, as suffices for cosmological testing
purposes. For conservatism on the observational side we
make no assumption as to the completeness of the sample in
redshift (e.g., there may be gaps in the redshift distribution).
All that is assumed is that at each redshift that is observed,
there is no selection on the basis of flux, down to the
designated limit of the sample. The conservatism of this
assumption is further increased by analysis of successively
brighter subsamples. Indeed, the flux limits may vary with
the object, as when different parts of the sky are observed
down to different limits.

Conservatism on the probabilistic side is attained by being
nonparametric, computer-intensive, and using maximum-
likelihood theory, all at the same time. At first glance, it may
appear paradoxical to be both nonparametric and maximum-
likelihood, because the latter theory has the goal of estimat-
ing a finite set of parameters, in terms of which the unknown

Abbreviations: LF, luminosity function; CC, chronometric cosmol-
ogy; FLC, Friedman-Lemaitre cosmology; LE, luminosity evolu-
tion; IRAS, infrared astronomical satellite; SIRAS, galaxy sample
treated in ref. 14; CMB, cosmic microwave background; EU, Ein-
stein universe; SR, special relativity; MP, Mach's principle; EEP,
Einstein equivalence principle; BQS, quasar sample treated in ref. 7;
SLF, sample LF estimated by ROBUST; QDOT, galaxy sample
treated in refs. 17 and 18; EMSS, x-ray source sample treated in refs.
19, 20, and 42; AGN, active galactic nucleus; GR, General Relativity.
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distribution function (here the LF, taken throughout in nor-
malized form) is expressed. But, following a suggestion from
Michael Woodroofe, we simply divided the absolute magni-
tude (or log flux) range subject to "Malmquist bias" into so
many bins and used the values of the differential LF, assumed
constant in each bin, as the parameters. A priori this appears
as a rather horrible nonlinear problem, involving extensive
number crunching with no assurance of convergence. For-
tunately, we found a very simple closed-form solution, ex-
pressible simply as a rational function of the occupation
numbers of the bins. Indeed, the solution was so natural that
we guessed it to begin with and then determined, following a
suggestion from Herman Chernoff, that it was indeed max-
imum-likelihood (2-3). We called our method ROBUST
because it made no a priori assumption as to a parametric
form for the LF.
Donald Lynden-Bell then called his heuristic infinite-

number-of-parameters maximum-likelihood analysis (4) to
our attention. While this work involved the assumption of
spatial uniformity of the source distribution, as ours did not,
the resulting LF estimate was nevertheless the limit of the
ROBUST estimate as the bin size tends to zero.
Maximum-likelihood theory, which for practical purposes

goes back to Fisher (1922), requires a finite number of
parameters and in these terms defines the notion of efficiency
(equivalent to that of maximal information content, roughly)
and of sufficiency (extraction of all the information in the
sample relevant to the parameters being estimated). RO-
BUST goes beyond generic maximum-likelihood estimation
in providing such sufficient statistics, and its validity as
actually programed has been tested by a vast number of
simulations. This is exemplified concretely by the effective-
ness of ROBUST in removing the flux cutoff bias for the
Hubble law, or for FLC more generally; correlations between
absolute magnitude and logz are greatly reduced in absolute
value, and the dispersion in the m given z relation, mlz (i.e.,
the "conditional distribution of m for given z") increased
only slightly and in fact reduced when the cutoff is especially
severe, by straightforward corrections that derive from the
ROBUST estimate of the LF.
Much of the recent astronomical literature uses a method

basically due to Schmidt (5) for estimation of LFs. This
method assumes spatial homogeneity or otherwise constrains
the spatial distribution of the sources and thus is physically
considerably less conservative than ROBUST. In addition, it
requires completeness in redshift over the range in question
and is thus observationally considerably more demanding.
Moreover, the Schmidt estimate seems rarely to have been
validated in concrete cases by direct a posteriori testing.

Perhaps the simplest and most direct test of an estimated
LF is to draw random sources from it and place them at the
observed redshifts, then reject them if the corresponding flux
is below the sample limit, and continue until all observed
redshifts are assigned an object from the estimated LF whose
corresponding flux at the observed redshift is as bright as the
sample limit. The resulting "random sample" should agree
within statistical fluctuations with the observed sample, if the
underlying cosmology is correct and the sample is fair,
modulo the inherent flux cutoff or other objective constraints
defining the sample. In particular, the application of the
underlying LF estimation to the random sample (or the
average LF obtained in a succession of random samples)
should result in an LF that is statistically consistent with the
original LF estimated from the directly observed sample
data. This has apparently not been done with the Schmidt
method, perhaps because it might seem (incorrectly) that the
statistical agreement would be automatic, as would, for
example, be the case when there is only one redshift, or no
cutoff on flux. But this "Monte Carlo" type procedure has
been performed many times for ROBUST estimates, both for

observed and for artificial samples. On the basis of the latter
trials, there is no question that the application of ROBUST to
an artificial flux-limited sample constructed assuming any
given cosmology and LF will reproduce that LF within
statistical fluctuations, irrespective of the assumed given
redshifts.
The results of parallel analyses of the low redshift to

distance laws (e.g., for z < 0.1) predicted by FLC or CC
(briefly, the Hubble law, or Cl, and the Lundmark law, or C2,
where Cp denotes the redshift-distance law of exponent p),
on the bases of large, clearly equitable, and objectively
defined flux-limited samples, have been qualitatively similar.
(Historical note: the Lundmark law is named primarily in
recognition of his methodological priority; the empirical law
he published in 1925 was quadratic but distinct from C2.) The
Cl predicted mean apparent magnitude at given redshifts is
too bright on average, and quite conspicuously so at the
lowest redshifts, which would be the least affected by as-
sumed luminosity evolution (LE). Relatedly, the slope of the
predicted magnitude-redshift relation consistently exceeds
that observed. The C2 predicted mean apparent magnitudes
are considerably closer to the observed values, and the
deviations show no significant trend with redshift.
The correlation of absolute magnitude with (log) redshift is

a highly relevant quantity because it speaks to the origin of
the notion that redshift may be a function of distance, which
arises from the observed correlation of apparent magnitude
with redshift. One of the most crucial functions of a cosmol-
ogy is to explain this correlation. In nonevolutionary cos-
mologies it is supposed to do so in terms of a redshift-
independent population of sources, whose absolute magni-
tudes are uncorrelated with the redshifts in the population at
large and only appear to be correlated in flux-limited samples
because of the cutoff bias. But is the cutoff sufficient to
explain the extremely strong negative correlations of Cl
absolute magnitudes with redshifts in typical flux-limited
samples?
The answer is definitely no: Cl almost invariably predicts

that the observed correlation will be greater (in absolute
value, less) than it is actually observed to be. One might hope
to explain this by progressive incompleteness at lower flux
levels, but this would suggest that subsamples with brighter
flux limits should show improved agreement between the Cl
predictions and the observed values, of the correlation of
absolute magnitude with redshift, and this is not the case. In
contrast, the C2 predictions for these statistics are in very
good agreement with their directly observed values. But not
only that, the C2 predictions for what the Cl correlation of
absolute magnitude with redshift will be observed to be are
extremely accurate-notwithstanding the inability of Cl it-
self to predict accurately its own statistic!
These results are indicative of serious flaws in Cl, but one

might hope that the deviations of its predictions could be
explained by a conjunction of physical perturbations, local
irregularities, and ancillary hypotheses. However, the devi-
ations of the Cl predictions of the dispersion sm in apparent
magnitude from its directly observed values appear inher-
ently irreconcilable. Large and otherwise appropriate sam-
ples will be discussed below in which the Cl predictions are
of the order of25% or more greater than the observed values;
and this type of discrepancy between theory and prediction
would tend to be enlarged rather than ameliorated by hypo-
thetical perturbations and the like. In contrast, the C2 pre-
dictions for sm are close to the observed values, typically
within 2% (e.g., Figs. 1 and 4).

SOME EXAMPLES: OPTICAL SAMPLES
Before detailing these results for recent large complete sam-
ples that appear to be state-of-the-art, we exemplify the
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statistical methodology just described by earlier analyses.
Comparative tests oftwo or more cosmologies, in which each
predicts the results of analyses predicated on the others, as
well as on itself, may be made by testing the random samples
constructed assuming the given cosmology in accordance
with the precepts of the alternative cosmologies. Figures 2
and 3 of ref. 6 compare the FLC and CC LFs in this way, on
the basis of the complete quasar sample of Schmidt and
Green (ref. 7; hereafter, BQS). As not unexpected, from the
general view that FLC is inconsistent with quasar observa-
tions, in its original nonevolutionary form, FLC cannot
consistently predict its own LF, let alone that of CC (figure
3). However, CC appears quite self-consistent and predicts
that analysis of the sample predicated on (nonevolutionary)
FLC will yield, within apparent statistical fluctuations, just
the ROBUST LF actually determined directly from the
observations. This speaks to the question of whether the LE
often postulated to reconcile FLC with quasar observations
is physically real or merely exculpatory.
A sample complete to a given flux limit is of course

complete to any brighter limit, and this provides a different
type of a posteriori check on an estimated LF. The LFs
derived from successively brighter subsamples should agree
within statistical fluctuations, in their common absolute
magnitude range, if the sample is fair and the cosmology is
correct. As the apparent magnitude limit of the very low
redshift galaxy sample of Visvanathan (9) is brightened from
12.4 to 12 to 11.6, figure 3 of ref. 8 shows the evolution of the
Cl LFs and the coherence of those for C2.
The LF determines the observational implications of any

given flux limit and, in particular, the mean apparent mag-
nitude at the given redshift z. The observed (mlz) relation,
when the redshift range is divided into a given number ofbins,
each containing the same number of objects (deleting objects
at the large redshift end if necessary), is thereby predictable.
The results for the sample (9) and the cosmologies Cp with p
= 1, 2, 3 are shown in figure 3 of ref. 10, using 10 bins. The
excessive brightness of the Cl prediction for the lowest
redshift bin is conspicuous. A statistical summary of the
prediction errors in the (ml z) relation in this and three other
complete low-redshift galaxy samples is given in figure 1 of
ref. 11. On the whole, Cl fits more poorly than Cp for any
value ofp in the range from p = 1 to p = 3, and C2 appears
optimal; its prediction errors are of the order of half of those
of Cl.

COMPLETE SAMPLES IN THE INFRARED AND
X-RAY BANDS

All of the foregoing complete samples are optical, for which
there are relatively large absorption and aperture effects. At
the low redshifts of complete galaxy samples, these appear
however to be inconsequential as regards comparative cos-
mological testing, on the basis of studies using any of various
estimates of absorption, or restriction to polar regions, and
the isophotal magnitudes or diameters involved in the above
cited work. The only apparent hope for the validation of Cl
lies in the possibility that the deviations of its predictions
from observation reflect a subtle combination of local per-
turbations that are absent at larger redshifts or in less
ambiguous wave bands.
IRAS (infrared astronomical satellite) galaxy samples pro-

vide flux-complete subsamples for which redshifts have been
increasingly observed. The sample of Soifer et al. (12) in the
redshift ranges between 500 and 5000 km/s, inclusive of 202
galaxies, has values of Sm and of the correlations pp of
absolute magnitude (where we convert infrared fluxes using
a Pogson scale to facilitate comparison with optical obser-
vations) with log redshift that impugn Cl and are consistent
with C2. For example, in 100 random samples the predicted

values of Sm all exceed the observed value, when Cl is
assumed as the basis for the construction of the samples, but
the predicted values are consistent with the observed value
when the construction of the random samples is based on the
assumption of C2. This provides some independent confir-
mation for the results of studies of complete optical samples,
but it is possible that a significant motion of the Galaxy
materially affects the results and conceivable that it effec-
tively mimics the configuration predicted by C2. Statistically
precise studies (13) have earlier shown that the comparative
fits of Cl and C2 are insensitive to assumed motions for the
whole sky sample (8), but this may not apply to a sample of
limited sky coverage such as ref. 12.

Fortunately, the deeper sample of Strauss et al. (14)
provides a basis for avoiding sensitivity to the motion of the
Galaxy. We have made parallel statistical analyses of this
sample testing Cl and C2, on the same basis as our earlier
analyses, in the redshift range 500 < cz c 30,000 km/s that
is usually considered pre-evolutionary, inclusive of 2551
galaxies. Denoting the ROBUST LF determined from a given
sample on the assumption of Cp as SLFp, the naive (uncor-
rected) sample statistics such as the correlation pp ofabsolute
magnitude with log redshift and the standard deviation o-p of
the residuals in the magnitude-redshift relation may be
corrected for the apparent magnitude cutoff straightfor-
wardly, as detailed in the references for optical samples, from
the SLFp. In the sample of Strauss et al. (hereafter SIRAS),
such correction increases the naive p1 from the value -0.91
to 0.02 and reduces the naive a-, from 1.73 to 1.56 mag, thus
confiming the effectiveness of ROBUST. In the case of C2,
a naive p2 of -0.67 is increased to one of 0.05, and the naive
a-2 is increased from 0.90 to 1.08 mag. (The decrease in a'1 and
increase in o-2 reflect the comparative strength of the flux
cutoff as viewed from the respective perspectives of Cl and
C2.) On this basis, there is not much to choose between Cl
and C2, apart from the lower dispersions for C2, which are
not conclusive. However, the C1 prediction errors for (ml z)
are of the order of twice those for C2, and the Cl prediction
is again conspicuously bright at the lowest redshifts. There is
also a pronounced trend with redshift in the Cl prediction
errors, corresponding to an excessive slope for the regression
of the predicted (ml z) on logz, and no such trend for C2.

In order to establish an overall probabilistic significance
level for the deviations of the Cp predictions from observa-
tion, it is necessary to focus on individual collective statistics,
of which the dispersion Sm in apparent magnitude appears as
one of the cosmologically most sensitive. The Cp predictions
for Sm in 100 random samples constructed assuming each
cosmology were computed. The directly observed value of
0.77 mag is invariably exceeded by the Cl predictions, which
have an average value of0.98 + 0.019, an excess of 10cr, while
the C2 prediction is 0.77 ± 0.013. In view of the origin of the
concept of functional dependence of redshift on distance in
the correlation of apparent magnitude with redshift, the
presumptively correspondingly vanishing (apart from the
bias produced by the flux cutoff) correlation of absolute
magnitude with redshift is a crucial statistic. Can the large
absolute values of these correlations actually be explained by
the flux limit? In fact, the Cl predictions for p1 in the random
samples are invariably too large, having an average value of
-0.85 ± 0.0066, a deviation from observation of almost 10cr.
The average C2 prediction is for the directly observed value,
with a standard deviation of 0.0034. As earlier noted, the
respective cross predictions ofCl and C2 are relevant: the Cl
prediction for p2 is deviant by 0.15 ± 0.016, while the C2
prediction for p1 is the observed value ± 0.012. The slope of
the linear regression of apparent magnitude on logz has been
emphasized traditionally. The random sample fluctuations in
the predictions for this statistic are larger than those for Sm
and p, but the Cl prediction is again deviant, by about 5a,
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while the C2 prediction is accurate. For a detailed analysis of
this sample, see ref. 15.

In the foregoing analysis, the observations were used as
given, without correction for possible motion of the Galaxy
(or Local Group). To check for sensitivity to such motion, the
same analysis was made with redshifts corrected by two
possible motions. There is no direct evidence that either
motion is applicable to the SIRAS sample, but they serve to
indicate the insensitivity of the foregoing results to conceiv-
able motions. One motion (called CMB) is associated with the
cosmic microwave background and is assumed to be 622
km/s towards galactic b = 30, 1 = 277 (16). The other (called
OPT) was estimated (13) from a whole-sky optical sample to
be a best-fitting motion assuming Cl. The application ofthese
motions changes the prediction errors in the statistics just
described by at most 0.02 for Sm and p and has only a marginal
effect on significance levels-e.g., with the CMB motion the
deviation in the Cl prediction for Sm is reduced from 10o, to
9.3oa. The conspicuously excessively bright prediction of Cl
for (mlz) in the lowest redshift bin is unaffected, as are the
other qualitative features of (ml z). This is significant in
relation to proposals for LE as an ancillary perturbation to
Cl; if linear to first order in z on the magnitude scale, as
appears natural in the context of Cl, the LE can correct the
excessive brightness of predictions at low redshifts only if
extremely rapid and then disturbs the fit at higher redshifts.
As earlier, to test for possible incompleteness in flux, the

subsamples brighter by 0.5 and 1 mag than the reported
sample limit were also tested in the same way, and with the
same possible motions. Since the sample sizes go down by
approximate factors of 2 for each 0.5 mag brightening, the
significance levels of the Cl deviations are reduced, but
never go below 3oa, and are generally considerably higher, at
the same time that the qualitative features of the Cl predic-
tions and their comparison with the C2 predictions are quite
unchanged.

Since it has been fairly widely assumed that the Hubble law
is applicable to the low-redshift regime (and the average
redshift for the SIRAS sample is <4500 km/s), the same
analysis that was just reported was applied to the deeper
IRAS QDOT sample of Rowan-Robinson et al. (17). This
consists of a random ("sparse") subsample of the IRAS
sample down to its 60-micron flux limit and includes more
than 2000 galaxies. With this flux limit and in the redshift
range 500 < cz c 30,000, comprising 1991 galaxies, the
overall deviations of the Cl predictions from observation and
the comparative fit of the C2 predictions are quite similar to
those for the SIRAS sample. Fig. 1 shows the Cp predictions

0.3
Observed value

0.25

c 0.2

t0.15

0.1 0

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
Standard deviation of apparent magnitudes

FIG. 1. Distribution of the Cp predictions of the dispersion in
apparent magnitude, assuming Cp (p = 1, 2), for the QDOT sample
in the range 500 s cz c 30,000 km s-1 (1991 galaxies), without any
assumed motion.

for Sm in 100 random samples constructed assuming each
cosmology. Fig. 2 shows the same for the predictions of the
correlations of absolute magnitude with logz, including cross
correlations. Fig. 3 shows the same for the slope of the linear
regression of apparent magnitude on logz. The results are
quite similar to those for the SIRAS sample.

Saunders et al. (18) have argued that evolution is required
to fit the Hubble law to the QDOT sample, but it is not clear
what falsifiable (and hence scientific) content would remain
in the Hubble law if there is no specification of the redshift
range in which it applies in nonevolutionary form and/or of
nontrivial constraints on the form of the evolution. Obvi-
ously, LE equal to the simple difference between the C2 and
Cl regression functions for apparent magnitude on redshift
for a fixed luminosity class will reconcile Cl to the observed
mlz relation, but to postulate such LE, or an effective
approximation thereto, would appear scientifically redun-
dant and render the present epoch special, considerably
diminishing the theoretical attractiveness of the Doppler
explanation for the redshift.
However, the SIRAS and QDOT samples are at fairly low

average redshifts, and one might entertain the hope that they
are affected by an unprecedented type of irregularity that is
absent at higher redshifts and spuriously renders their pre-
dictions for the observed dispersion in apparent magnitude
highly excessive. Fortunately, the EMSS-AGN sample of
Gioia et al. (19) and of Stocke et al. (42) provides an
observational basis for dealing with this possibility and for
further comparative testing of Cl and C2. This sample is
complete in x-ray flux and extends over a large redshift range;
at the same time its wave band minimizes absorption and
aperture ambiguities that may afflict optical samples at larger
redshifts. At the limiting sensitivity forAGNs given in ref. 19,
the sample includes 128 AGN up to z = 0.15, 224 to z = 0.3,
and 277 to z = 0.5. The EMSS sample as a whole is a
composite of subsamples with varying limiting fluxes, as in
the case of the BQS, but the limiting fluxes applicable to the
individual objects have not been available in this case. We
tentatively adopt the reported limiting sensitivity as an over-
all effective, if approximate, complete flux limit for the AGN
at the lower redshifts, subject to a posteriori checks, such as
the analysis of successively brighter subsamples, of increas-
ing completeness.
The results of parallel analyses of Cl and C2 in all redshift

ranges up to z = 0.3, beyond which the FLC and CC
predictions begin to depart significantly from those of simple
power laws, are similar. For brevity, we give primarily the
results for the sample up to z = 0.3, in which range Cl has
traditionally been established from observations on bright

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4
Correlations of absolute magnitude with log redshift

FIG. 2. The same as Fig. 1 for the correlations of Cp absolute
magnitude with log redshift, as predicted by Cp, and also as
predicted by C(3 - p).
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r0.15
a)

:*' 0.15

Cc

aJ.

Slope of the regression of apparent magnitude
on log redshift

FIG. 3. The same as Fig. 1 for the regression of apparent magnitude
on log redshift.

cluster galaxies (discussed later). In all analyses, as earlier,
the absolute magnitude range subject to cutoff varying with
redshift (Malmquist bias) has been divided into 10 bins and
the LF assumed constant within bins of the resulting size.
Figs. 4 and 5 are the parallels for this sample to Figs. 1 and
2 for the SIRAS sample and appear qualitatively identical. As
an a posteriori check, one may compare the SLFs for Cl and
C2 estimated directly from the observations with the average
predicted LF in 100 random samples. C2 appears self-
consistent, but Cl is deviant. A further check shows that
while the SLF2s in the redshift ranges 0 < z c 0.15 and 0.15
< z 0.3 are consistent with the overlapping portions of
SLF2 in the redshift range 0 < z s 0.3, the Cl LFs differ, in
keeping with the concept of LE. However, extremely rapid
evolution is required to achieve self-consistency for Cl. For
example, with the weak evolution estimated in ref. 20, it
remains the case that in 10,000 random samples, the Cl
prediction for the dispersion in apparent magnitude invari-
ably exceeds that observed, and similarly for the observed
and predicted correlation of absolute magnitude with red-
shift.
These results have been checked by analysis of a variety of

subsamples, both with brighter flux limits and in other
redshift ranges. However, Cl is consistently deviant in
qualitatively the identical fashion to the samples discussed
earlier, with or without the LE proposed in ref. 20, in the
redshift ranges up to 0.1, 0.15, 0.2, or 0.3, as well as the
intermediate ranges 0.1 < z < 0.2 or 0.1 < z < 0.3, or with

Standard deviation of apparent magnitudes

FIG. 4. The same as Fig. 1 for the EMSS-AGN sample in the range
z c 0.3 (224 sources).

0.25

C)

Cc

CL)

0.21

0.151

0.11

0.051

v1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
Correlations of absolute magnitude with log redshift

FIG. 5. The same as Fig. 2 for the sample of Fig. 4.

brighter flux limits. For example, with a limit 1.5 mag brighter
than the reported sensitivity limit for AGN, in the well-
observed range z c 0.3, the predictions of Cl for the
dispersion in apparent magnitude in the corresponding sub-
sample of90 AGN, in 100 random samples, invariably exceed
the observed dispersion. At the same time, ROBUST cor-
rection reduces the absolute value of the correlation with
redshift from 0.91 to 0 and considerably reduces the Cl
dispersion in absolute magnitude, so the problem is not with
the effectiveness of ROBUST. There is also the same inabil-
ity as in the IRAS samples for Cl to predict the observed
correlation of the Cl absolute magnitudes with redshift,
although this correlation is accurately predicted by C2 (as
well as the correlation of the C2 absolute magnitudes with
redshift). Very bright optical subsamples of the EMSS-AGN
appear likely to be substantially complete optically to appar-
ent magnitudes of 17 or 16.5 and show qualitatively identical
statistical effects.
These results are very much of a piece with our earlier-

optical studies, but the dispersion in apparent magnitude,
which was not treated in the optical studies, adds a new
dimension. A priori, one would expect the prediction by a
correct theory for this dispersion to be, if at all deviant from
direct observation, somewhat less than the observed disper-
sion. Presently unknown or unobserved factors-e.g., pos-
sible discordant redshifts as proposed by Arp (21)-and of
course peculiar velocities, could add to the dispersion. But
there is no known mechanism in general statistics or specific
mechanism in astrophysics that could diminish the dispersion
by the order of the more than 25% deviation of the Cl
prediction from observation. Cl thus appears irreconcilably
inconsistent with substantial and model-independent obser-
vations in a variety of wave bands and redshift ranges, from
that just beyond the range in which it originated to that of the
bright cluster galaxies that have been claimed to establish it
definitively. One might suspect that an unknown and unprec-
edented factor was involved if all power laws were deviant in
the same way, but the C2 predictions are quite accurate,
although they involve no adjustable cosmological parameters
or evolution.
Of course, no theory can fit discordant observations,- of

which there are a plenitude in samples observed or corrected
on a model-dependent or subjective basis. Moreover, basi-
cally equitable and objective samples can be subjected to ad
hoc selection procedure or special tests designed-ior the
occasion that may appear to invalidate any given theory,
since observed samples always occupy a set in event space
of probability zero, where continuous variables are involved.
A variety of such scientifically inappropriate criticisms ofCC
have been published, but space permits consideration ofonly

Observed value of Observed value of
Cl correlation C2 correlation

- 0 0

U.J5

11' .~~~~~~~~~~~~~~
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the major one-that the C2 predictions do not fit the cluster
galaxy observations. These observations have been de-
scribed here by van den Bergh, without however noting that
those that most closely fit Cl consist of samples selected in
whole or in part assuming the Hubble law-e.g., from the
Abell catalog (22), which states (p. 214) "in determining
whether a cluster meets this criterion, it was assumed that the
red shifts ofclusters are proportional to their distances" (our
emphases).
Such samples can hardly be used properly to test theories

with different redshift-distance laws, notwithstanding claims
that de facto if not prima facie, the selection criteria were
model-independent. (Additional selection problems, such as
the attempted deletion of cD galaxies, are no less question-
able from the standpoint of statistical equitability.) They can
however be used for consistency checks on the Hubble law.
The sample of Hoessel et al. (23), which was described by van
den Bergh (24) as a complete sample drawn from the Abell
catalog that is an "almost ideal database for the study of the
velocity-distance relation," has a closeness of fit to the
Hubble law, as measured by rms scatter, that is "remark-
able." However, a statistical analysis of the same type as
earlier indicates that Cl is self-inconsistent, as regards its
predictions for Sm and pl. More specifically, in 100 random
samples constructed assuming Cl, from the SLF1 for the
sample assuming its completeness to its faintest apparent
magnitude, the dispersion in apparent magnitude of the 116
galaxies of the sample invariably exceeded the observed
dispersion. The observed and Cl predicted values for Sm were
0.96 and 1.05 ± 0.03 mag, a deviation of 3co. Similarly, the
observed and predicted values for the slope of the magnitude
to logz regression were 4.61 and 5.01 ± 0.16.

In addition to being subjectively selected, the bright cluster
galaxy samples typically made extensive corrections that are
theory-dependent. As noted by Humason et al. (25), inap-
propriate corrections for aperture, which are substantial and
depend on qo, which is unknown, may lead to a trend with
redshift in the observations that tends to obfuscate cosmo-
logical implications. It is interesting to note that the sample
of Gunn and Oke (26), which attempts a more objective
treatment of aperture and other corrections than earlier
studies, and is largely independent of the Abell catalog, is fit
by C2 slightly more closely than by Cl (in terms of rms
scatter), notwithstanding that the apertures involved are
based on Cl.
Thus bright cluster galaxies, as actually observed and

reported, at best provide a weak consistency check for Cl
and do not in the least rule out C2. The knowledgeable
strictures of Zwicky (27) concerning cluster galaxy samples,
"Hubble's method is subject to many objections ... great
caution is indicated," seem too rarely to have been heeded.
In any event, bright cluster galaxies form a small fraction of
the general galaxy population, whose selection model-
independent magnitude observation is complex and difficult,
if-possible at all, and now appears unnecessary for cosmo-
logical testing purposes.

THE LARGE-REDSHIFT REGIME
Our charge was to treat the redshift-distance relation, but at
larger-redshifts the concept of distance becomes too ambig-
uous ta be appropriate for direct observational analysis. The
issue may be moot at redshifts up to about 0.3, within which
both FLC with empirical values for its parameters and CC are
wefl approximated by power laws, and space appears close to
its local euclidean tangential approximation. But a more
positivistic approach is essential at large redshifts, and before
entering into the theoretical aspects required to specify the
distance concept, the directly observed flux-redshift relation
wiflf be examined.

FLC now postulates various forms of evolution, especially
LE at larger redshifts, and only CC makes a specific predic-
tion, to the effect that the flux F varies as (1 + z)/z, apart from
the cutoff bias, the usual corrections for nonstandard spectra,
etc. This relation is a directly observable one that is testable
in flux-limited samples by the same statistical methods as
earlier.
Two of the largest and most fully documented samples that

extend to large redshifts are the BQS (up to z = 2.15) and the
EMSS-AGN (up to 2.87). The former was treated in ref. 28
by the methods earlier indicated, and it was found that the CC
predicted flux-redshift relation is consistent with these ob-
servations. The latter has recently been studied in its full
redshift range and, under the same completeness assumption
as earlier, is also consistent with CC. Moreover, as in the case
of the BQS also, CC implies that the predictions of nonev-
olutionary FLC will deviate from direct observation in the
way that is observed. As in the low-redshift regime, this
indicates the scientific redundancy of the evolutionary hy-
potheses that have been proposed for the exculpation of
FLC, but which appear incapable (at present, at least) of
direct observational substantiation.
Although the term "distance" has to be a theoretical one

in the extreme distance regime, a unique redshift-distance
relation can be derived from the flux-redshift law, if one
makes the simplest assumptions about the structure of space;
and this relation is moreover confirmed by further analysis of
observed data. Specifically, assuming that space is either
spherical or euclidean, then the variation ofF with (1 + z)/z
together with the assumed absence of singularities in finite
parts of space first rules out the euclidean possibility and then
implies that if r is the distance in radians on spherical space,
then z = tan2(r/2). The argument here is based on the known
variation of flux inversely with the surface area at a given
distance. The r resulting quasi-empirical law is identical to
the theoretical redshift-distance law in CC (31, 43).
The determination in laboratory units of the length of one

radian in spherical space S3 of three dimensions-in effect,
the cosmic distance scale-can be made from the directly
observed proper motion to redshift relation for superluminal
sources. The proper motion, like the apparent diameter,
varies inversely with the square root of the redshift in CC.
From this follows (29) a statistically consistent estimate ofthe
cosmic distance scale (or "radius of the universe") R that is
an explicit function of the observed proper motions and
redshifts. Inserting the data reported in ref. 30 into this
analytic expression, R is estimated as 160 ± 40 Mpc (1 parsec
= 3.09 x 1016 m). Because of projection and statistical effects
(31), this value is quite consistent with estimated ages for the
oldest discrete sources, notwithstanding that it appears an
order of magnitude smaller. To the extent, however, that
there may be a significant cutoff in ref. 30 on the observation
of smaller superluminal motions, the estimation procedure
involved in ref. 29 will benefit by refinement along the lines
of ROBUST.
The final redshift-distance relation that results:

z = tan2(r/2R); R 160 ± 40 Mpc,

serves to explain, without ancillary hypotheses, the nonpar-
ticipation of the Local Group in the "general expansion"
noted by Hubble. At the same time, it explains the tendency
of estimates of the Hubble parameter H to increase with
redshift and in some degree to reconcile disparate estimates
of H, for which it gives the value 100 km/s/Mpc at z = 0.01.
An incidental result is the reconciliation of the extant obser-
vations on superluminal sources with the expected isotropy
of the angles between the directions ofthe proper motion and
the line of sight; this in fact provides the basis for a nontrivial
a posteriori check on the estimate.
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THEORETICAL CONSIDERATIONS
The scientific evaluation of a proposed redshift-distance
relation necessarily involves theory as well as the statistics of
direct observations, as already noted. Moreover, the ques-
tions naturally arise of whether CC applies to extragalactic
astronomy but not on the microscopic scale, and relatedly, of
whether it is only an effective theory and not a fundamental
one. Finally, the origin and historical development of FLC
and CC are relevant to the evaluation of their proposed
redshift-distance laws.
CC has been claimed by some to be deviant from known

principles of local physics and therefore a priori dubious. But
it is very much in line with contemporary theoretical physical
development, from Maxwell, Mach, and Einstein to particle
physics, and it is rather FLC that is fundamentally deviant.
First, FLC introduces the radical concept of an intrinsically
Expanding Universe, for which there is no precedent, and a
nontrivial degree of philosophical skepticism. In contrast, in
CC space is fixed, as in traditional physics. Second, while a
suitable local Doppler theory may be compatible with the law
of the conservation of energy, a cosmic Doppler theory
abandons this law. There is no generic global conserved
energy in GR (e.g., ref. 32), and it is clear from the explicit
time dependence of space in FLC that there can be none in
these cosmologies, implying even the absence of local energy
conservation. In contrast, in CC the energy is conserved, as
in traditional and modem microphysics. The redshift arises
because some of the energy becomes diffuse (quasi-
gravitational) and only a local component is directly observed
by existing telescopes.
CC arose as a further implementation of the "ansatz" that

Minkowski proposed, to explicate the essential idea of spe-
cial relativity (SR)*. In the terminology, for example, of
Faddeev and of Lichnerowicz, SR is a deformation of New-
tonian physics, to which it tends as c -* oo. Quantum theory
can be understood in these terms as a similar deformation of
classical physics, as h -O 0. But physics requires three
fundamental units-e.g., the idea ofa fundamental length was
proposed by Heisenberg in 1946 (33). CC connects
Minkowski's ansatz with Heisenberg's proposal by a defor-
mation involving the cosmic distance scale R, rather than the
microscopic length contemplated by Heisenberg, thereby
providing the last fundamental unit required by physics.
Perhaps unexpectedly and paradoxically, this length is an
invariant under symmetry transformations, and its introduc-
tion effectively removes prototypical ultraviolet divergences
in nonlinear quantum field theory (34). The elimination of
such divergences was the main objective that Heisenberg
sought by the introduction of a microscopic length.
The intractability ofthe ultraviolet divergences in quantum

field theory led Schwinger (35) to conclude that "a conver-
gent (quantum field) theory cannot be formulated within the
framework of present space-time concepts." Basically, CC
modifies these concepts by postulating that the proper space-
time arena for fundamental physics is a variant of Minkowski
space that may be called the Einstein-Maxwell cosmos. It is
conformally equivalent to the Einstein universe (EU) at the
same time that it is the maximal space-time to which solu-
tions of Maxwell's equations (or those of Yang-Mills, etc.)
canonically extend.

In the language of quantum field theory, it is a bare
space-time, or in classical terms, an empty or reference
space-time, which is conformally invariant. In mathematical
terms, it is the homogeneous space consisting of the quotient
of the (conformal) group SU(2,2), in its simply connected
form G, modulo its maximal parabolic subgroup (which

*Minkowski, H., Address to the 80th Assembly of German Natural
Scientists and Physicists, 1908, Cologne, Germany.

includes the Poincare group and scaling). It possesses an
essentially unique locally Minkowskian causal structure that
is invariant under G. There is no invariant metric under G, but
there is an invariant length-namely, the distance between
antipodal points-when represented as the EU, R' x S3.
Again in quantum field theoretic terms, this bare space-time
is clothed by the energetic contents of the universe, by a
natural interpretation of Mach's principle in this context.
More specifically, these contents determine a time x space
frame in which the total energy is minimal; this clothed frame
is precisely identifiable with the EU. Thus the large-scale
contents of the universe break the symmetry down from the
conformal group G to the Einstein isometry group K (which
in mathematical terms is the maximal essentially compact
subgroup of G, unique within conjugacy). There is an eight-
parameter family of such splittings into time x space, or
equivalently of Ks, and minimization of the energy picks out
the splitting that may be described as the standard of rest, or
inertial frame, of the universe, according to CC.
At first glance, this may appear to depart from a concept

central to GR, that space-time exists only as a manifestation
of the interactions of its energetic contents. In fact, however,
it merely adapts this classical format to the standpoint
introduced into quantum field theory by the advent of renor-
malization theory and lays preliminary ground for the quan-
tization of gravitation. The Einstein equation survives and
achieves a direct physical interpretation as the simplest
causal equation for the propagation of local versions of the
EU, which arise from local perturbations of the "bare"
(locally Minkowskian) causal structure by local matter, apart
from a locally unobservably small 1/R term representing the
intrinsic curvature of S3.
The absence of an invariant metric under G thus appears

not at all as a blemish, but as a physically essential feature,
which provides a basis for resolving more fully the classic
dispute as the nature of space and time, between Newton on
the one hand and Huygens and Leibniz on the other (36, 44).
The position of the latter was updated by Mach and Einstein
and seems unquestionably correct from a fundamental stand-
point. However, the Newtonian position is essential for
practical purposes and is in effect updated by modem quan-
tum field theory. In this, it seems necessary for experimental
purposes to represent the observed physical particles, which
are continually interacting with the contents of the universe,
by "free" particles that partake of the fundamentally myth-
ical quality of Newton's absolute space and time. These free
particles are represented as inhabiting a Poincare group
invariant space-time, that of Minkowski, whose structure is
however unaffected by the particles. The G-invariant space-
time of CC is merely a canonical variant of Minkowski
space-namely, the universal cover (i.e., simply connected
form) of its conformal compactification.
Minkowski's explication of SR was that in essence it

replaced the generators of transformation to moving axes in
Newtonian theory, xoaj, by the corresponding Lorentz boost,
obtained by the addition of c-2xjao, which evidently tends to
zero as c -+ oo. CC makes an analogous proposal for the
generator of time evolution. In essence, it replaces the
Newtonian generator ao by adding to it R-2[(1/2)xo(xoao +

xjaj) - (1/4)x2a0], which looks complicated but simply serves
to produce the generator a, of time evolution in the EU, t
being the Einstein time. The two operators a, and ao do not
commute, so that the corresponding energies cannot be
simultaneously conserved. CC ascribes the redshift to the
difference between these energies. A careful study of Max-
well's equations (37) shows that while the Minkowski energy
(i.e., that corresponding to a0) of a photon is determined by
the local structure of its wave function, principally the
infinitesimal oscillation frequency, the Einstein energy (i.e.,
that corresponding to a,) includes an additional positive term
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that depends on the global structure of the wave function,
principally the number of oscillations in addition to their
infinitesimal frequency. This term is proportional to the space
curvature R -1 and is unobservably small for a freshly emitted
localized photon, but in the course of cosmic time it increases
nontrivially, while the more localized energy corresponding
to ao that is observed by present photon detectors decreases.
The result is that a cosmically aged photon appears red-
shifted, but its total Einstein energy is conserved.
The explicit time dependence of the FLC models break

Lorentz invariance, as well as conservation of energy-
momentum. The loss of such theoretically fundamental as
well as experimentally well-established symmetries must be
weighed in the balance against the apparent simplicity of a
Doppler explanation for the redshift. Hubble and Tolman
(38), among others, expressed doubts about the Doppler
theory; they suggested that the redshift would be more
intelligible as a space curvature effect. As just described, the
chronometric redshift is consistent with this suggestion.
Equivalently, every free photon wave function in Minkowski
space extends canonically to one that is defined throughout
the EU. Its Einstein energy is then given by the integral over
the Einstein space S3 of the square of the field strength in
curvilinear coordinates and exceeds the corresponding ex-
pression in rectilinear coordinates by an amount that varies
as R-1 (45).
More generally, the CC framework applies with significant

effect not only to the redshift but also to the diffuse back-
ground radiation (41, 46), to microphysics (34, 39, 40), and to
gravity (36, 44).

The cosmological statistical studies described above would not
have been possible without the collaboration of J. F. Nicoll. Exten-
sion of chronometric theory to the microphysical contest was very
greatly facilitated by collaboration with the late S. M. Paneitz. I
thank also D. Johnson, W. Segal, P. Wu, and Z. Zhou for their
collaboration in the cosmological studies. For collaboration in the
development of relevant group and quantum field theoretic aspects,
I thank H. Jakobsen, B. Orsted, B. Speh, M. Vergne, D. A. Vogan,
Jr., and Z. Zhou. Thanks are also due B. T. Soifer, J. T. Stocke,
M. A. Strauss, and A. E. Wehrle (IPAC) for e-mail communication
of data treated above.
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